Refine Your Search

Topic

Search Results

Standard

Composite Secondary and Tertiary Structure for Landing Gear

2019-04-29
WIP
AIR6827
This document will contain guidance and considerations for the use of composite materials on non-primary structure for landing gear systems. Content to include design considerations, conditions and applications where composites are feasible/beneficial, high-level descriptions of various manufacturing processes, and certification/validation considerations.
Standard

Landing Gear Structural Health Monitoring

2012-04-12
HISTORICAL
AIR6168
This SAE Aerospace Information Report (AIR) discusses past and present approaches for monitoring the landing gear structure and shock absorber, methods for transient overload detection, techniques for measuring the forces seen by the landing gear structure, and methods for determining the fatigue state of the landing gear structure. This AIR covers the landing gear structure and shock absorber. It does not include the landing gear systems or landing gear wheels, tires and brakes. Landing gear tire condition and pressure monitoring are detailed in AIR4830 and ARP6137, respectively.
Standard

Information on Hard Landings

2016-11-11
HISTORICAL
AIR5938
This document provides information on the current practices used by commercial and military operators in regards to hard landings (or overload events designated as hard landings). Since detailed information on inspections would be aircraft specific, this AIR provides only a general framework. Detailed information and procedures are available in the maintenance manuals for specific aircraft. Because hard landings potentially affect the entire aircraft, guidelines are listed here for non-landing gear areas. But, the primary focus of the document is the landing gear and related systems. The document may be considered to be applicable to all types of aircraft. This document does NOT provide recommended practices for hard landing inspections, nor does it provide recommendations on the disposition of damaged equipment. Refer to ARP 4915 and ARP 5600.
Standard

Information on Hard Landings and Abnormal Landing Gear Loading Events

2022-12-20
CURRENT
AIR5938A
The primary focus of this document is to provide information on the impacts hard landings and abnormal load conditions on landing gear and related systems. However, because hard landings potentially affect the entire aircraft, this document also includes information for non-landing gear areas. The document may be considered to be applicable to all types of aircraft. This document does NOT provide recommended practices for hard landing inspections, nor does it provide recommendations on the disposition of damaged equipment. Refer to ARP4915 and ARP5600 for information on dispositions relating to landing gear components or wheels involved in accidents/incidents.
Standard

Mechanical Switch Usage for Landing Gear Applications

2023-07-11
WIP
AIR4077A
This Aerospace Information Report (AIR) will examine considerations relative to the use of mechanical switches on aircraft landing gear, and present "lessons learned" during the period that these devices have been used.
Standard

Mechanical Switch Usage for Landing Gear Applications

2017-10-18
CURRENT
AIR4077
This Aerospace Information Report (AIR) will examine considerations relative to the use of mechanical switches on aircraft landing gear, and present "lessons learned" during the period that these devices have been used.
Standard

Landing Gear Stability

2017-10-18
CURRENT
AIR4894
This SAE Aerospace Information Report (AIR) discusses the nature of landing gear stability, describes many common landing gear stability problems, and suggests approaches and methods for solving or avoiding them.
Standard

Landing Gear Common Repair

2019-04-11
CURRENT
AIR5885A
This document outlines the most common repairs used on landing gear components. It is not the intention of this AIR to replace overhaul/component maintenance or technical order manuals, but it can serve as a guide into their preparation. Refer to the applicable component drawings and specifications for surface finish, thickness, and repair processing requirements. This document may also be used as a guide to develop an MRB (Material Review Board) plan. The repairs in this document apply to components made of metallic alloys. These repairs are intended for new manufactured components and overhauled components, including original equipment manufacturer (OEM)/depot and in-service repairs. The extent of repair allowed for new components as opposed to in-service components is left to the cognizant engineering authorities. Reference could be made to this document when justifying repairs on landing gears. For repairs outside the scope of this document, a detailed justification is necessary.
Standard

Arrestor Cable Traversing Considerations For Landing Gear

2023-09-06
WIP
AIR8619
This SAE Aerospace Information Report (AIR) discusses the potential considerations for landing gear that may have to traverse arresting cables. This can be a consideration civil aircraft and aircraft without arrestor hooks that operate into dual use (military and civil) airfields.
Standard

Tests, Impact, Shock Absorber Landing Gear, Aircraft

2012-10-03
CURRENT
AS6053A
This specification covers definition of landing impact tests which are to be conducted on landing gear assemblies including shock absorbers, suggested instrumentation for the tests and required data of the resulting test report. It is intended to standardize impact test procedures on landing gear shock absorbers and to provide sufficient data to allow evaluation of the design with respect to requirements of MIL-L-8552 and MIL-S-8959 as applicable.
Standard

Tests, Impact, Shock Absorber Landing Gear, Aircraft

2007-12-05
HISTORICAL
AS6053
This specification covers definition of landing impact tests which are to be conducted on landing gear assemblies including shock absorbers, suggested instrumentation for the tests and required data of the resulting test report. It is intended to standardize impact test procedures on landing gear shock absorbers and to provide sufficient data to allow evaluation of the design with respect to requirements of MIL-L-8552 and MIL-S-8959 as applicable.
Standard

Crashworthy Landing Gear Design

2007-07-09
HISTORICAL
AIR4566
The intent of this SAE Aerospace Information Report (AIR) is to document the design requirements and approaches for the crashworthy design of aircraft landing gear. This document covers the field of commercial and military airplanes and helicopters. This summary of crashworthy landing gear design requirements and approaches may be used as a reference for future aircraft.
Standard

Crashworthy Landing Gear Design

2021-08-09
CURRENT
AIR4566A
The intent of this SAE Aerospace Information Report (AIR) is to document the design requirements and approaches for the crashworthy design of aircraft landing gear. This document covers the field of commercial and military airplanes and helicopters. This summary of crashworthy landing gear design requirements and approaches may be used as a reference for future aircraft.
Standard

External Hydraulic Fluid Leakage Definition for Landing Gear Shock Absorbers

2023-11-16
CURRENT
ARP6408
The purpose of this SAE Aerospace Recommended Practice (ARP) is to provide a practical definition of external hydraulic fluid leakage exhibited by landing gear shock absorbers/struts. The definition will outline normal (acceptable weepage) and excessive leakage (unacceptable leakage) of shock absorbers/struts that is measurable. The definition of leakage is applicable to new gear assemblies, refurbished/remanufactured (overhauled) shock absorbers/struts, leakage of shock absorbers/struts encountered during acceptance flights, newly delivered and in-service aircraft. This ARP is intended to provide guidelines for acceptable leakage of landing gear shock absorbers/struts between the ambient temperatures of -65 °F (-54 °C) and 130 °F (54 °C) and to outline the procedure for measuring such leakage. The specific limits that are applied to any particular aircraft shall be adjusted by the aircraft manufacturer before inclusion in the applicable maintenance manual.
X